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ON STABILITY OF MOTION RELATIVE TO A PART OF VARIABLES
UNDER CONSTANTLY ACTING PERTURBATIONS

A.S5. OZIRANER

A number of theorems on stability of motion relative to a part of the variables
under constantly acting perturbations are proved with the aid of the method of
Liapunov functions. Examples are presented.

1. We consider a system of differential equations of perturbed motion
x=X(,x), X0=0, x=R" (1.1)

in which /1/ X = (Y1, « + -» Yms 31y - - s 2p), m >0, p >0, n = m + p. We assume that: a) the right-
hand sides of system (1.1) in the domain

120, [YISH>O0, |z|<<+ o (1.2)

are continuous and satisfy the conditions for the uniqueness of the solution; b) the solutions
of system (l.1) are z-continuable. Together with system (1.1) we consider the "perturbed"
system

X=X (x)+ R, x) (1.3)

relative to which we assume the fulfillment of conditions a) and b), where, in general, R (¢,
0)==0. By x = x(f £, X,) we denote the solution of system (l.3), determined by the initial
conditions X (fo; £y, Xg) = X,. Generalizing the concepts introduced in /2—6/ to the problem of
stability relative to a part of the variables, we make the following definitions.

Definition 1. The motion x = 0 of system (l.l) is said to be y-stable under constant-
ly acting perturbations (c.a.p.), small at each instant (small on the average or integrally
small)), if for any & >0,% >0 (respectively, €>0,£>0,T >0 or & >0, f£>0) there
exist &,(e, %) >0, 8,(e,£)) >0 (respectively, 8,(e,t, T) >0, 65 (g, 29, T) > 0 or 8; (s, &) > 0, 8; (¢, £,) >
0) such that every solution x (f;f;, Xo) with || x,|| << & of any system (1.3) for which there is
fulfilled in domain

t>t yl<<e Ozl o0 (1.4)
the condition
IR x)[| <8 (1.5)
(respectively,
+T
§ suplIR(v, 0|1yl <e, 0 [z <+ oolde <8y for all >4 (1.6)
H
or -
(sup IR () [y l1<e, O N2 )] < + 0] dT <6, (1.7)
to

satisfies inequality ||y (¢ to, Xo)ll<<e for all >4, .

Definition 2. If in Definition 1 for any & >0 (for any &€ >0,T >0 or for any &_>0)
we can choose & (e) > 0,8, () > 0 respectively, 8, (¢, T) >0, 8,(¢, ) >0 or 8 (g) >0, 8, (e) >0)
not depending on t, > 0, then the y-stability under c.a.p. small at each instant (small on
the average or integrally small) is said to be uniform. (Uniform stability under c.a.p. small
at each instant is also called total stability /7,8/).

If in Definition 1 the inequality || x|/ << 8, is replaced by the condition { y,ll << 6 (| Zo Il
<C o0), then from Definitions 1 and 2 we obtain the definitions of stability (uniform stabil-
ity) under c.a.p. small at each instant (small on the average or integrally small) of the set

{x: y==0} (1.8)

*Prikl.Matem.Mekhan. ,45,No.3,419-427,1981
304



On stability of motion relative to a part of variables 305

under the assumption that it is invariant relative to system (1.1). It is clear that the Yy-
stability under c.a.p. of motion x=0 of system (1.1) follows from the stability underc.a.p.
of invariant set (1.8). It is also obvious that from the stability (uniform stability) under
c.a.p. small on the average follows the stability (uniform stability) under c.a.p. small at
each instant, and this, in its own turn, implies stability (uniform stability) under integral-
ly small c.a.p.

2. Theorem 1. Assume the existence of a function V (f,X) having continuous and bound-
ed partial derivatives with respect to the coordinates

| oV/ox |} < N = const (2.1)
and satisfying the inequalities
Vi, x)>a(lyld (2.2)
k 1
Vi n<b({(Dz)"), m<kn (2.3)
i=1
whose time derivative relative to system (1.1)
3
Vantx) << —c ((g1 z,2)'*) (2.4)

Here a(r),b(r) and c¢(r) are continuous monotonically increasing functions vanishing when r =
0. Then the motion x =0 of system (l1.1l) is uniformly y-stable under c.a.p. small at each
instant.

Proof. The derivatives of function V (f, X) for systems (l.l) and (1.3) are related by

Van 0=V 61+ 282 R x) (2.5)

According to (2.3)
k
(3 z2)" > 677 (1,%)
i=1

(b~ is the function inverse to b) which together with (2.4) leads to the inequality
VZLI) (tv X) < —¢ (b-l (V’ (tv X))) (2.6)

on the basis of (2.6} and {2.1), from (2.5) we obtain
Vg x) K— @V Ex)+ N R x)(l (2.7

Let ¢ (0,H) be given. Assume 8,(e) =b"1(a(e)), O,(e) =c(b2(a(e))/N. If (1.5) is fulfil-
led in domain (1.4), then

Vaat: %) v ¢, n=a <0 (2.8)

follows from (2.7).
Consider an arbitrary solution x(i; £, Xo) of system (1.3) with ¢ >>0,]{x)| < 6. By (2.2),
V (to, X0) <<'a (e). Let us show that

V(t, x (5 to, x0)) << a(e) for all t> 1 (2.9)

We assume, to the contrary, that V (¢, x (&%, X)) <  a () when t & [t,, t), but V (f1, X (£1; £y, X0)) = a (€).
Then, obviously, Viig) (t1, X (t1; %o, Xo)) >> 0, which contradicts (2.8). On the basis of (2.2), from
(2.9) we conclude that ||y (% &, Xo)|l<<& for all ¢>1t. The theorem has been proved.

In particular case, when k = m, the following stronger statement is valid.
Theorem 2. Assume the existence of a function V(4 x) satisfying (2.1), (2.2) and

Ve, x) <o (vl (2.10)
Vi, x)<<—c(lyld (2.11)
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Then the set (1.8), invariant /1,9/ relative to system (1.1), is uniformly stable under c.a.p.
small on the average.

Proof. since V(t0,2z)=0 in accord with (2.10), then from (2.1) follows

Vi, x) <Nyl (2.12)

Let &€& (0, H) be given. We introduce the notation (see (1.6))
e@)=sup[|RE&x)|: [yl <e, 0Lz | < oo] (2.13)

and we consider the function /3,4/ f(t x) = V (¢, x) B, According to (2.1) and (2.13) its
derivative relative to system (1.3) satisfies the inequality
ffasEx)=eb OB OV (£,x) + eP OV (¢ x)+ (2.14)
v (¢, . .
b O LD R (¢ x) < f 1,00 (1) + Vi 6O (1,%) + N o @)V (6, %)]
when |[lyil<{e. We set §,(e) =he/ N, where h = h(e) e (0,1) will be chosen later. By (2.12)

Vit x)<Che for ||yll<<8 (2.15)
In the domain
t>0, <lyl<e, 0<Clzf<lee (2.16)
there hold the inequalities
a@)<V (EX)<Ne, Vigy (X)) << —¢(8) (2.17)
consequently, fi3) satisfies the estimate
Fam (6, %) <1 (6, %) (B (&) — ¢ (81) / (Ve) -+ No (1)/a (8)] (2.19)
in (2.16). 1In (1.6) we choose 6,(s, T} from the condition
8, (e, T) = (1 — q) ¢ (61) a (81) T/ (N%) (2.19)

where ¢ = g (¢) €(0,1) will be determined later, and we construct the function ¥ (¢} (22> 0) such

that the equality
() T (ut+1) T

vWdi= § [(1—g)c(®iNe)—No(t)a(d)lde (2.20)
[ivg T
is fulfilled for all p =0,1,2, ... . On the strength of (1.6) and (2.19) we can take it that
P()>0 for all >0
We set '
B ()= § I— ¥ (%) + (1 — ) ¢ (52)/(Ne) — Nep (v)/a(8,)] d (2.21)
0

From (2.18) and (2.21) it follows that

fam (&, %) < F (8 x) [— () — ge (8)(Ne)] <O (2.22)

in domain (2.16). According to (2.20), p(uT) =0 ; consequently,
t T T
S dr < fwmydr= § (1 —q)c (@)/(Ne) — No(r)/a Bn)dv <
(1] 0 [1]
?

(1—g)c (8) T/(Ne), § (N (v)/a (8:)) dv < (1 —g) ¢ (8:) T/ (Ne)
0
for any te&({0,T] and, therefore,
[B() | < A=3(1 — g)c (b)) TANe) for all >0 (2.23)

From (2.15), (2.23) and (2.2) we conclude that
P ®) hhyr<a << heed, fE %) yy— >ale)e™
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We now choose numbers k(e) and (&) from the conditions

h(e)ee<alele, A=3(1— q(e)c(b(e))T/(Ne) <1 (2.24)
Then, obviously,

sup [f (&, x): | y | << 61] S hee < a ()/e < inf [f (5, x): || ¥ || =2} (2.25)

Since (2.22) is fulfilled in (2.16), from (2.25) we conclude that inequality [y (% &, x|l <e
is valid for the solution x(f %, Xo) of system (1.3) with %% >0, || yoll < 81, | Zll<<oo for all
t >1,, since otherwise we would find two instants {; and {, such that

1y (21i 2o, %o) | = 81, 11y (£55 to, X} | =&, 8y <Ny (7 b, X)f| <& for all & (h, &),
and, therefore,

ty
a(e)fe < f (t2, X (t2; to, Xo)) =f (£1, X (£1; Lo, Xo)) + S fiaa) (T X (T; to, Xo)) AT < f (82, X (813 to, Xo)) < hree
1

which contradicts the first of inequalities (2.24). The theorem has been proved.

Note. Theorems 1 and 2 generalize the results of /2—-4/ to the problem of stability
relative to a part of the variables; in addition, Theorem 2 strengthens Karimov's theorem /10/.

Corollary. If the functions X and 8X/dx are continuous and bounded in domain (1.2),
while the invariant set (1.8) is uniformly asymptotically stable, then it is uniformly stable
under c.a.p. small on the average.

Indeed, under the assumptions made, as was shown in /9/ (see /1/ as well), a function
V (¢, x) satisfying the hypotheses of Theorem 2 exists.

Theorem 3. Assume that for any T >0 there exists L(T)>0 such that condition
UX(t, x)—X(¢ xVI<L|x —x"|] is fulfilled in damain 0t T, Ix{i<<H. If functions
V (t,x) and W (¢ x), exist, satisfying inequalities (2.1) and

a(ly)<VEx)<b(iyl), WEx)>cdiyl) (2.26)

in domain (1.2), and, in addition, if the condition
Viunx) + Wt hapyicn ocisl <o S0 as t—o00

is fulfilled for any A and W such that 0<A<<p<<H, then the motion x =0 of system (1.1)
is uniformly Yy -stable under c.a.p. small at each instant.
The proof is obtained by a slight modification of that of Theorem 1, allowing for the
results in /11/.
Theorem 4. Assume the existence of a function V (¢, x) satisfying conditions (2.1) and
(2.2), such that
Van (6 x) <O (2.27)

Then the motion x =0 is uniformly y-stable under integrally small c.a.p. If moreover ¥V (¢, x)
satisfy the inequality (2.10) then the invariant set (1.8) is uniformly stable under integral-
ly small c.a.p.

Proof. From (2.1) it follows that
Vi, x) < Nilx|l (2.28)

Let e (0, H) be given. Set 6;(2) = 8,(e) =Y,a(e)/N. For the solution x(f %, Xo) of system
(1.3) with t >0, |l x|l < 8, , by virtue of (2.2), (2.5), (2.1), (2.27), (2.28) and (1.7), we
have

14
a (" M (t; to, XO) ") < |4 (tv X (t; to, XO)) =V (tOv XO) + _‘l V;l.s) (Tv X (T; t07 xO)) dv < N " Xp " +
13

t -
zYV'(l,l) (v, x(7;t0, Xo))dv + N S IR (7, x(T; b, Xo0)) [ dv < /sa(e) + Ysa(e)=a (e)
3 fs

Consequently, |[ly(% &, Xo)ll<<e for all t>1,., The theorem's second assertion is proved an-
analogously with the trivial replacement of (2.28) by (2.12).
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(o] . .
Notes. 1. The first assertion of Theorem 4 generalizes the results of /5/ to the
problem of stability relative to a part of the variables.

(o]

2¥. In Theroems l1— 4 we can waive the smoothness of function ¥V, having replaced con-
dition {2.1) by the weaker |V (;,x')~V(;,x)|<N|x —x"; in this connection, by V' we should
understand the generalized derivative (see /12,13/, for instance).

3. Example 1. Let us consider the equations of motion of a holonomic mechanical system
in Lagrange coordinates

a ar ar & . 5
CETAlr TR i=1%,...,n) (3.1}
Here I = T,+4 T+ To 1is the kinetic energy (Ts is an s th-degree form in ¢1,..., ) and U (q)

is the potential energy. Assume that system (3.1) has a particular solution (the equilibrium
position)
q = q‘ =0 (3. 2)

If T does not depend explicitly on time, then Egs.(3,1) admit of a {(generalized) energy in-
tegral

n
H=T,~Ty+ U = const (ZT2 - 2 a;; (q) qi‘qj') (3.3)

i1

The derivative H- relative to the "perturbed" system

- e = ——— 1 R, Pe=1,. .. 3.4
dt 8g;  9g; 9g; TR U=heom) i
has the form
n
Hgp= 2 Ry (3.5)
i=1
If 7, is positive definite with respect to gq,-.9 and U— 7, is positive definite with
respect tO @, «-. 8y, then the equilibrium position (3.2) is uniformly stable relative to
Qs - Gms @ - - gn under integrally small c.a.p. A; . If, in addition, the constraints im-
posed on the system are independent of time (=17, fo=0),U admits of an infinitesimal upper
bound with respect to ¢, -.., gn, and the coefficients ¢;(q) are bounded, then the set g, q°):
G=-..=gn=g'=...=gy"= 0} invariant relative to system (3.1) is uniformly stable under

integrally small c.a.p. B;.

Example 2. The motion of a holonomic mechanical system with time-independent const-
raints, under gyroscopic and, perhaphs, dissipative forces, is described by the system  of
Lagrange eguations

"
d ar T .8 )
”ET'W;‘%T"Z&M‘T; (=tem g5 g5 (3.6)
7=
Relative to system (3.6}, T(‘s‘s)= —2f, while the derivative of the sume function I relative to
the perturbed system n
d 8T ar . af .
&t q;  dg, -”"'Zgiﬂj ~ Be; +R, (i=1,..., 1) 3.7)
F=1
has the form
n
Tigmy =2+ _EIRm (3.8)
3=
If $>0, T is positive definite with respect to g,...,¢n, and the coefficients (g (see

{3.3)) are bounded, then the set
{q, ):q" =0} (3.9
invariant relative to system (3.6) is uniformly stable under integrally small c.a.p..If, ad-

ditionally, f is positive definite with respect to g ....e", then the invariant set (3.9) is
uniformly stable under c¢.a.p. small on the average.
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4. The comparison principle with a vector-valued Liapunov function /6,14/ in Khatvani's
form /15/ can be extended to the problem of y-stability under c.a.p.

Theorem 5. Assume that:

I. A vector-valued function V(i x} = (Vi {t,x),..., Vi(f X)) exists, satisfying the follow-
ing conditions:

1) V{,x) and V(',.n (t,x) are continuous, V(0y=Viuy({t0)==0;

2) for some [, 1 Ik V220, ..., Vi >0, while

Vit %)+ oo+ Vi) > a ) (4.1)

3 | VE)Y—VYELx")|KN|x' —x"||, N==const;
4) V4. satisfies the system of differential inequalities

Vo &x) < EE %, V{5 X)) (4.2)
II. 1) A vector-valued function f(f,x, V) is defined and is continuous in the domain

>0, Iyli<H, |zl [VI<4
where 4 = o0 or A>sup{fVEx)[:2>0, [yI<HE
v 2) each of the functions f,(1,x,V) is nondecreasing with respect to Vy,..., Ve, Veu. -
soy Vi

3) ¢, 0,00=0.
Denote @ = (..., ®) and consider the auxiliary system
f=X(t,x), o =f(x, 0) (4.3)

If under the condition @y >0, ..., @p >0 the solution (x =0, ® = 0) of system (4.3) is a~-
stable (uniformly a-stable) under c.a.p. small at each instant, small on the average or in-
tegrally small, then the motion x==0 of system (1.1) is y~stable (uniformly y-stable) under
c.a.p. small at each instant, small on the average or integrally small, respectively.

Proof. According to condition I—3) and to (4.2) the generalized derivative Vg
satisfies the inequality

Vaua GG, VEX) +NRED[D b=(1,...,1)
Together with (4.3) we consider a second auxiliary system
=X(x)+R(¢x), o=itx0)+N[REx)|Db (4.4)

We carry the proof out for c.a.p. small at each instant (the proof is completely analogous fox
c.a.p. small on the average or integrally small).

The zero solution of system (4.3) is a-stable under c.a.p. small at each instant; there-
fore, for any e& (0, H), &, >0 there exist 1n,(g, %) >0 and 14 (e, ty) >0 such that every solu-
tion (x(& {fy Xo), @ (2; to, Xo, 0)) With {I%e]] <1y, I @il << n of any system (4.4) for which there is
fulfilled in domain

i
t}tmxgllm,iga(e}
the condition
IREx)<msw NiREx)[[bI<ne {(4.5)

satisfies for all t>1 the inequality

3
élm, (£; tor Xo, @) | < a (8) (4.6)

For the numbers m, (e, %) and 1, (e, &) there exists §;(e, f) and §; (e, £),0 <8 < 1y, 0 << §; < 1My,
such that |V {&, x)ll<<m; when [xe}]]<<8, , and (4.5) follows from (1.5).

Let x(f 1, X)) be a solution of system (1.3) with || X,]|<(8;. With it we associate the
upper solution /16/ @*{f &, Xs, ) of problem

== f (X (5 to, Xo), @) + N | R{E, x (520, %)) | b (4.7)
@ (to) == 0o ==V (£5, Xo)
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By the choice of 8, we have | @]/ <<%, and, consequently, inequality (4.6) is valid. On the
strength of II— 2) the right-hand sides of system (4.7) satisfy the Wazhewski condition /16/,
and since

Vs (6 X (£ to, X0) (8, X (8 20, Xo), V (£, X (£ £, Xo))) 4+ N || R (¢, X (£; to, X0)) || b

we conclude, on the basis of /16/, that
V (¢, % (t; o, X0)) << 0" (2 Lo, X0, ) (4.8)

From (4.1), (4.8) and (4.6) follows
! [
a(lly@itnxdl) << Zle (b X (£ 20, %0)) << D) 0,* (25 o, X0, @0) < @ (£)
8= =1

whence || y(¢; to, Xo) |l <<e for all t>t. If the a-stability of the zero solution of system (4.3)
under c.a.p. small at each instant is uniform, then the numbers 1, M, 8 and 8, are independ-
ent of {#. The theorem is proved.

The author thanks V.V. Rumiantsev for attention to the work.
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