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ON STABILITY OF MOTION RELATIVE TO A PART OF VARIABLES 

UNDER CONSTANTLY ACTING PERTURBATIONS* 
A.S. OZIRANER 

A number of theorems on stability of motion relative to a part of the variables 
under constantly acting perturbations are proved with the aid of the method of 
Liapunov functions. Examples are presented. 

1. We consider a system of differential equations of perturbed motion 

x'=X(t,x), x(t, 0)~ 0, x=R" (1.1) 

in which /l/ x = (yr, . . . . y,, zl, 2) m>O,p>O,n=m+p. We assume that: a) the right- *a*, pt 
hand sides of system (1.1) in the domain 

t>O, IIYll<~>O0, IIzll<+- (1.2) 

are continuous and satisfy the conditions for the uniqueness of the solution; b) thesolutions 
of system (1.1) are z-continuable. Together with system (1.1) we consider the "perturbed" 
system 

x' =X (t, x) + R (t, x) (1.3) 

relative to which we assume the fulfillment of conditions a) and b), where, in general, R (t, 
0) + 0. By x = x(&&,x,) we denote the solution of system (1.3), determined by the initial 
conditions z (to; &I, x0) = xg. Generalizing the concepts introduced in /2-6/ to the problem of 
stability relative to a part of the variables, we make the following definitions. 

Definition 1. The motion x = 0 of system (1.1) is said to be y-stable under constant- 
ly acting perturbations (c.a.p.), small at each instant (small on the average or integrally 
small)), if for any e>O,t,>O (respectively, E>O,tO>O,T>O or e>O, t0>0) there 
exist 6,(&,tO)>0,gB(~,tO)>0 (respectively, &(~,t~,l')>O, 6% (E, to, T) > 0 or 61 (E, t,,) > 0, 8, (E, to)> 
0) such that every solution x(t;to.xo) with Ijx,Ij (6, of any system (1.3) for which there is 
fulfilled in domain 

_. 

t>to, IIYII<e> o<II~II<+~ 

the condition 

II R@, x) II <b 

(respectively, 
1+r 

s ~~~~II~~~~~~II:Il~lld~,~~llzl~<+~~d~ <& for all 
t 

or 

3 SUP IllR(%x)ll:(I Y I/Q, O<llzll< + mld~<& 
to 

satisfies inequality 11 Y(t; t,,x,)II < s for all t >to . 

(1.4) 

(1.5) 

t >-to (1.6) 

(1.7) 

Definition 2. If in Definition 1 for any e > 0 (for any e>O,T>O or for any e>O) 

we can choose 6r (e) > 0,6, (e) > 0 respectively, 6, (E, 2') > 0, 6, (E, 2') > 0 or 6, (E) > 0, 6, (.s)>O) 
not depending on to > 0, then the Y-stability under c.a.p. small at each instant (small on 
the average or integrally small) is said to be uniform. (Uniform stability under c.a.p. small 
at each instant is also called total stability /7,8/J. 

If in Definition 1 the inequality jIxOII (6, is replaced by the condition llYOII <6,(j/z,I/ 

< m), then from Definitions 1 and 2 we obtain the definitions of stability (uniform stabil- 
ity) under c.a.p. small at each instant (small on the average or integrally small) of the set 

{x: Y=o} (1.8) 
- 
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under the assumption that it is invariant relative to system (1.1). It is clear that the Y- 

stability under c.a.p. of motion x=0 of system (1.1) follows from the stability underc.a.p. 
of invariant set (1.8). It is also obvious that from the stability (uniform stability) under 
c.a.p. small on the average follows the stability (uniform stability) under c.a.p. small at 
each instant, and this, in its own turn, implies stability (uniform stability) under integral- 
ly small c.a.p. 

2. Theorem 1. Assume the existence of a function v(t,x) having continuous and bound- 
ed partial derivatives with respect to the coordinates 

and satisfying the inequalities 

11 ~?V/ax )I < N = const (2.1) 

v (ts xl > a (II Y II) 

V (6 x)< b (ciil 6’)“‘) , m<k<n 

whose time derivative relative to system (1.1) 

G.1) (h xl < -c uil 4”‘) 

(2.2) 

(2.3) 

(2.4) 

Here a(r), b(r) and c(r) are continuous monotonically increasing functions vanishing when r = 
0. Then the motion x = 0 of system (1.1) is uniformly y-stable under c.a.p. smallateach 
instant. 

Proof. The derivatives of function V(t,x) for systems (1.1) and (1.3) are related by 

V'(l.0) (6 x)=v’(l.l) 09 xl + v R (t, x) (2.5) 

According to (2.3) 

(il Q)“* > b-’ (V It, 9) 

(b-’ is the function inverse to b) which together with (2.4) leads to the inequality 

G.1) (G x) < - c (b-' (V, (& x))) (2.6) 

on the basis of (2.6) and (2.1), from (2.5) we obtain 

V'(M) (t, x) < - c (b-i(v (t, x))) + N II R (t, x) II (2.7) 

Let E E(O,H) be given. Assume 6,(e) = b-‘(a(e)), 6, (e) = c(b-l(a(e)))/ N. If (1.5) is fulfil- 
led in domain (1.4), then 

V’(l.& 4 Iv (1, X)=a (0) < 0 (2.8) 

follows from (2.7). 
Consider an arbitrary solution x(t; to,%) of system (1.3) with t0>0,jI~II<6r. By (2.2), 

V (to, x0) <‘a (e). Let us show that 

V (t, X (t; to, X0)) <a (8) for all t> to (2.9) 

We assume, to the contrary, that V(t, x (t; to,xg)) < a (e) when t E [to, tl), but V (TV, x (tl; to, x0)) = a(e). 
Then, obviously,F&)(t,,x (tl; to,x,,))>O, which contradicts (2.8). On the basis of (2.21, from 
(2.9) we conclude that Ily(t; t,,xo)ll<e for all t>to. The theorem has been proved. 

In particular case, when k = m, the following stronger statement is valid. 

Theorem 2. Assume the existence of a function V(t,x) satisfying (2,1), (2.2) and 

I' (t, x) < b (II Y II) (2.10) 

v' (& x) < - r (II Y II) (2.11) 
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Then the set (1.81, invariant /1,9/ relative to system (l.l), is uniformly stable under c.a.p. 
small on the average. 

Proof. Since V(t,O,z)s 0 in accord with (2.10), then from (2.1) follows 

Let eE(O,H) be given. We introduce the notation (see (1.6)) 

‘p(t) = sup [II R (t, x) II : II Y II < 6, 0 < II z II < ~1 (2.13) 

and we consider the function /3,4/ f(t,x) = V(t,x)efi(‘). According to (2.1) and (2.13) its 
derivative relative to system (1.3) satisfies the inequality 

r~r.~) (t, x) = e@ W (t) V (t, x) + eB (t)v’~l.l) (L x) + (2.14) 

eB ct)w R (t, x) 6 f (k 4IB (t) + V’WI (L 4/V (t, x) + N ‘p (q/V (t, x)] 

when IIYII<&~ We set &(e)= h&IN, where h = h(e)~(O,l) will be chosen later. By (2.12) 

In the domain 

v (C x) <ha for II y II< t& (2.15) 

t>0, &,<IIYII<% O<ll~ll<~ (2.16) 

there hold the inequalities 

a(&)< v(t, x)< NE, V'(U) (G x) < --c (61) (2.17) 

consequently, fil.s) satisfies the estimate 

in (2.16). In (1.6) 

where p = q(e) E (0,1) 
that the equality 

is fulfilled for all 

h) (a x) < f (t, 4 [g’ (t) - c (61) i (NE) -t NT (t)/a (WI (2.18) 

we choose &(E, T) from the condition 

S, (E, T) = (1 - q) c (61) a (61) T/ (NW (2.19) 

will be determined later, and we construct the function q(t) (t> 0) such 

(~+r)r (w+r)r 

1 $(t)dt = j [(I -q) c(~,)/(~E) - NV (G/a (Wldt (2.20) 
NT PT 

TV = O,l,Z, . . . . On the strength of (1.6) and (2.19) we can take it that 

q(t)>0 for all t>O. 

We set 

B(t)=SI-~(~)+(l--g)c(6,)/(N'~)-N~(~)/aoldz (2.21) 
0 

From (2.18) and (2.21) it follows that 

fi1.3) (t, x) < f (t, x) I-9 (t) - CIC (WWI < 0 (2.22) 

in domain (2.16). According to (2.20), p(pT) = 0 ; consequently, 

irp(.r)dr gjlp(z)d~=~((l_g)c(B,)i(!V~)-Nrp(.c):a(8~))d~; 
0 0 0 

for any TV fO,Tl and, therefore, 

1 p (t) I < A z 3 (1 - 9) c(b) T/(NE) for all 12 0 

From (2.15), (2.23) and (2.2) we conclude that 

f (h 4 III y II ~8, < heA, f (6 4 III y II =E > a (4 cA 

(2.23) 
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We now choose numbers h(e) and P(s) from the conditions 

h (e) ee < a (e)/e, A = 3 (1 - 4 (e)) c (61 (W’l(Ne) < 1 (2.24) 

Then, obviously, 

SUP If@, x):11 Y II< &I,< bee < a We < infV(bx): ll Y II = 81 (2.25) 

Since (2.22) is fulfilled in (2.161, from (2.25) we conclude that inequality IIy(t; &,,x,)ll <e 

is valid for the solution x(t; t,,~) of system (1.3) with to> 0, II yell< 61, ll ~oil<m for all 
t>lo, since otherwise we would find two instants tl and ta such that 

Ildh; to, ~0) II = 61, Ilu(h; to, ~0) II = 8, bcll~(z; to, x,)\l < 8 for all T E (k h), 
and, therefore, 

tr 

fz (e)/e < f b, x (tdb, ~0)) =f(h, x (tl;tO,xO)) + 1 f& (t, x (z; t0,xo)) dr < f (tb x (tl;t0, x0)) <he 

1, 

which contradicts the first of inequalities (2.24). The theorem has been proved. 

Note. Theorems 1 and 2 generalize the results of /2-4/ to the problem of stability 

relative to a part of the variables; in addition, Theorem 2 strengthens Karimov's theorem/lo/. 

Corollary. If the functions X and ax/ax are continuous and bounded in domain (1.21, 
while the invariant set (1.8) is uniformly asymptotically stable, then it is uniformly stable 

under c.a.p. small on the average. 
Indeed, under the assumptions made, as was shown in /9/ (see /l/ as well), a function 

V(t,x) satisfying the hypotheses of Theorem 2 exists. 

Theorem 3. Assume that for any T> 0 there exists L(T)>0 such that condition 

II x (t, XI') - X (t, x”) II < L II x’ - xm II is fulfilled in domain O<t< T, IIxll\<H. If functions 
V(t,x) and W(t,x), exist, satisfying inequalities (2.1) and 

a (II Y II) < v (6 XI < b (II Y II)9 w es XI > c (II Y II) (2.26) 

in domain (1.2), and, in addition, if the condition 

V;&t,x) + W(t,x)xgllulluc.osU~U<~~O as t-w 

is fulfilled for any h and /h such that O(h<p<R, then the motion x = 0 of system (1.1) 
is uniformly y-stable under c.a.p. small at each instant. 

The proof is obtained by a slight modification of that of Theorem 1, allowing for the 
results in /ll/. 

TheOrem 4. Assume the existence of a function V(t,x) satisfying conditions (2.1) and 
(2.2), such that 

vil.1) (G x) < 0 (2.27) 

Then the motion x = 0 is uniformly y-stable under integrally small c.a.p. Ifmoreover V(&x) 

satisfy the inequality (2.10) then the invariant set (1.8) is uniformly stable under integral- 
ly small c.a.p. 

Proof. From (2.1) it follows that 

v (h 4 < iv II x II (2.28) 

Let e E (0, H) be given. Set &(e) = 6, (e) = V4 a (e)/iV. For the solution x(t; TV, xg) of system 
(1.3) with to>O,)Ix011<81, by virtue of (2,2), (2.5), (2.11, (2.27), (2.28) and (1.71, we 
have 

a (11 Y (t; to? X0) 11) < v (h X (t; to, xo)) = v (to, xo) + f V;l.s) (T, x (T; to, x0)) dz< N 1) x0 11 + 
1. 

cc 

~V’(1.1)(Z.X(T;tolX.))d5 +N~llR(~,r:(~;t~,x~))IId~<l/~u(e)+l/~a(e)=a(e) 
Lo 

Consequently, I( y(t; t,, x0)11 < e for all 1>t,. The theorem's second assertion is proved an- 
analogously with the trivial replacement of (2.28) by (2.12). 



308 A.S. Oziraner 

Notes. lo. The first assertion of Theorem 4 generalizes the results of /5j to !-iltr 
problem of stability relative to a part of the variables. 

2'. In Theroems l-4 we can waive the smoothness of function V, having replaced con- 
dition (2.1) by the weaker 1 V (8.x’) - V (t, x”)[ < N 11 x’ -xx//; in this connection, by I" we should 
understand the generalized derivative (see /12,13/, fox instance). 

3. Example 1. Let us consider the equations of motion ofaholonomicmechanical system 
inLagrange coordinates 

d m m au 
Tiian,‘-x=--q (i=f 1.. ., =I (3.1) 

Here T = T, + T,+ TO is the kinetic energy (T, is an sth-degree form in 8'1,. ..,q,,‘) and U(q) 
is the potential energy. Assume that system (3.1) has a particular solution (the equilibrium 
position) 

qZR'=O (3.2) 

If T does not depend explicitly on time, then Eqs.(3.1) admit of a (generalized) energy in- 
tegral 

H~TT,-Z’T,$U=const (3.3) 

The derivative H' relative to the "perturbed" system 

has the form 

(3.4) 

(3.5) 

If T, is positive definite with respect to ql',,..,qn‘ and U- To is positive definite with 
respect to g,,. .., h. then the equilibrium position (3.2) is uniformly stable relative to 

Pi. . . ., qm, 411.3 . ‘9 9n’ under integrally small c.a.p. Ri . If, in addition, the constraints im- 
posed on the system are independent of time (Tz T,,TomO),u admits of an infinitesimal upper 
bound with respect to q,,...,g,,,, and the coefficients aij(q) are bounded, then the set ((4.9'): 
q, = . = q* = ql’ = . . = qn’ = 0) invariant relative to system (3.1) is uniformly stable under 
integrally small c.a.p. Ri . 

Exatnple 2. The motion of a holonomic mechanical system with time-independent const- 
raints, under gyroscopic and, perhaphs, dissipative forces, is described by the system of 
Lagrange equations 1. 

d b’T 8T ‘. af ..--c_-= 
d.t aqi aq g,jnj' -T (i = 1, . . ., n; gij = - gji) 

j=1 

(3.6) 

Relative to system (3.6), T&+= -2f, while the derivative of the sume function T relative to 
the perturbed system 7% 

d aT %!I’ 
z~--== z gijqj’ - s + Ri (i = 1, . .( n) (3.7) 

311 
has the form 

T;,.,) = - 2f -I- 5 RjPj’ ( 
ix1 

3.8) 

If f>,O, T is positive definite with respect to ql',...,qn‘, and the coefficients ai) (see 

(3.3)) are bounded, then the set 

((9, 9'): s’=W (3.9) 

invariant relative to system (3.6) is uniformly stable under integrally small c.a.p..If, ad- 
ditionally, f is positive definite with respect to ql’,...,gn’. then the invariant set (3.9) is 
uniformly stable under c.a.p. small on the average. 
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4, The comparison principle with a vector-valued Liapunov function 16,141 in Khatvani'S 

form /15/ can be extended to the problem of Y-stability under c.a.p. 

Theorem 5. Assume that: 
I. A vector-valued function V(t, X) =(vc (6 x), . - -, vk (6 X)) exists, satisfying the follow- 

ing conditions: 
1) V (t, x) and V;,.,, (6, x) are continuous, V (t,O)T Vt~.s)(t,O) = 0; 
2) for some 1, 1 ,<-i,< k, VI > 0, . . ., Vl > 0, while 

v, (tl, x) f ... + VI (a 4 > a (II Y II) 

3) ((V(t,x’)-V(t,x”)II,<NIIx’--ill, N=const; 
4) viw satisfies the system of differential inequalities 

v;,.,,(t,x)< f @9X, V@, xl) 

(4.1) 

(4.2) 

II. 1) A vector-valued function f(t,x, V) is defined and is continuous in the domain 

$20, IlYll\<H, Ilsll<+m, llVll<A 
where A = 00 or A>sup[llV(t,x)/l:t>O, Ily#<~Rl; 

2) each of the functions f,(t,x,V) is nondecreasing with respect to Vl,._.,Vel,Vs+~,. 
. .t Vk; 

3) r(t, 0, 0) = 0. 
Denote a = (01.. . .) or) and consider the auxiliary system 

x’=X(t,x), O'=f(t,X,W) (4.3) 

If under the condition or,, 2 0, . . ., olo>O the solution (x = 0, 0 = 0) of system (4.3) is a- 
stable (uniformly a-stable) under c.a.p. small at each instant, small on the average or in- 
tegrally small, then the motion x=0 of system (1.1) is y-stable (uniformly y-stable) under 
c.a.p. small at each instant, small on the average or integrally small, respectively. 

Proof. According to condition I- 3) and to (4.2) the generalized derivative Vh.8) 
satisfies the inequality 

V'(1.s) (& x) < f(t, x, V ft, x)) + NllR(t, xl II b, b= (2, . . . , 1) 

Together with (4.3) we consider a second auxiliary system 

x' 3 X(t, x) + R (t, x), o’ = f (t, x, 01 + N Ii R (t, x) II b (4.4) 

We carry the proof out for c.a.p. small at each instant (the proof is completely analogous for 
c.a.p. small on the average or integrally small). 

The zero solution of system (4.3) is a-stable under c.a.p. small at each instant; there- 
fore, for any EE (O,H), to>0 there exist ~(e,to)> 0 and Q(E, to)>0 such that every solu- 
tion (x(t; to, x&o(t; &,x0,4)) with IIxoII<Q,I~~~I<~~ of any system (4.4) for which there is 
fulfilled in domain 

the condition 

IIR(trx)II<TJs, NIIR&x)/IIIbI/<~ 

satisfies for all t>,te the inequality 

(4.5) 

&Ii1 I% 0; to, x09 00) I < a (8) (4.6) 

For the numbers ~(e,t~) and qa(e,to) there exists 6, (a, to) and 

such that II V (to, x01 II < q1 when 

4, (8, to), 0 < 8, < ql, 0 < 6, -c Q, 
II xo II -G 13, , and (4.5) follows from (1.5). 

Let x(t; &,x0) be a solution of system (1.3) with IIx~/I<~~. With it we associate the 
upper solution /16/ ca+(t; t xo, a@) of problem 

a~* =f (t, x(t; to, xc), 0) + N 11 R (k x (t; to, x0)) {lb (4.7) 
0 &I) = cue = v (fo, x0) 
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By the choice of 6r we have )Iw[~<Q and, consequently, inequality (4.6) is valid. 0:: t.l;c 
strength of 11-22J the right-hand sides of system (4.7) satisfy the Wazhewski condition /IC;!, 

and since 
V'o.s) (t, x (t; tot xo)) < f (t, x (t; to, xa)r v (t, x(t; to, x,,))) + A'[/ R (t, x(t; to, x0)) 11 b 

we conclude, on the basis of /16/, that 

V @,x @;to, x0))< 6J'- (t; to, x0, a) 

From (4-l), (4.8) and (4.6) follows 

(4.3) 

u (11 Y (t; to, x0) II) < $I v, 0, x (t; to7 xd) < il a,+ (t; t0, x0,4 < a (8) 

whence 11 y(t; to, XO))~ < e for all t > to. If the u-stability of the zero solution of system (4.3) 
under c.a.p. small at each instant is uniform, then the numbers '11, Q, 6, and ti2 are independ- 
ent of to. The theorem is proved. 
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2. 

3. 
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The author thanks V.V. Rumiantsev for attention to the work. 
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